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Abstract— In the conventional sampling process, for perfect reconstruction of signal according to Nyquist-Shannnon sampling theorem, a 
band-limited analog signal has to be sampled at atleast tw ice its highest frequency. The Nyquist-Shannon sampling theorem provides a 
suff icient condition, but not a necessary one, for perfect reconstruction. The f ield of compressive sensing provides a stricter sampling 

condition when the signal is known to be sparse or compressible. Compressive sensing specif ically yields a sub-Nyquist sampling criterion. 
Compressive sensing contains three main problems: sparse representation, measurement matrix and reconstruction algorithm.  By now, 
some available measurement matrices have been discovered, such as Gaussian or Bernoulli independent and identically distributed (i.i.d) 
random matrices, scrambled Fourier matrix and some structurally random matrices etc. For nonlinear reconstruction, besides the Basis 

Pursuit (BP) method, several fast greedy algorithms have been proposed, such as the orthogonal matching pursuit (OMP), Regularized 
OMP, Compressive Sampling OMP. When reconstructing 2D images, besides BP, another popular method is through the minimization of 
total variation (min-TV) [2]. 

Index Terms— compressive sensing, sensing matrix, sparse representation, multiw avelet transform; 

——————————      —————————— 

1 INTRODUCTION                                                                     

 HILE the Nyquist-Shannon sampling theorem states 
that a certain minimum number of samples is required 
in order to perfectly capture an arbitrary band-limited 

signal; but when the signal is sparse in a known basis we can 
vastly reduce the number of measurements that need to be 
stored. This is the fundamental idea behind CS: rather than 
first sampling at a high rate and then compressing the sam-
pled data, we would like to find ways to directly sense the 
data in a compressed form, at a lower sampling rate. CS dif-
fers from classical sampling in three important respects. First, 
sampling theory typically considers infinite length, conti-
nuous-time signals. In contrast, CS is a mathematical theory 
focused on measuring finite-dimensional vectors in RN. 
Second, rather than sampling the signal at specific points in 
time, CS systems typically acquire measurements in the form 
of inner products between the signal and more general test 
functions. Thirdly, the two frameworks differ in the manner in 
which they deal with signal recovery. In the Nyquist-Shannon 
framework, signal recovery is achieved through sinc interpola-
tion - a linear process that requires little computation and has 
a simple interpretation. In CS, however, signal recovery from 
the compressive measurements is typically achieved using 
highly nonlinear methods. 
 

 
Fig.1: Block diagram for compressive sensing 

2 COMPRESSIVE  SENSING PARADIGM 

The block diagram for signal processing using compressive 
sensing is shown in figure 1. The scene under observation is 
capture using some sensing matrix, which maps the signal 
from N-dimensional space to M-dimensions, where M<<N. 
Thus it captures the signal in a compressed form, rather than 
sampling at Nyquist rate and then compressing. Finally the M-
dimensional data needs to be reconstructed back to the N-
dimensional space using efficient reconstruction algorithms. 

 
CS theory asserts that one can recover certain signals and 

images from far fewer measurements M than data samples N. 
To achieve this CS relies on two principles: 

1. Sparsity /compressibility: This reflects the fact that the in-
formation contained in a signal can be much smaller that it’s 
effective bandwidth. CS exploits explicitly the fact that the 
data are economically represented in some dictionary ϕ. 

2. Incoherence between the sensing modality and ϕ: This extends 
the uncertainty principle between time and frequency in the 
sense that signals that are sparse in ϕ must be spread out in the 
domain in which they are acquired; that is, the sensing vectors 
are as different as possible from the sparsity atoms (and vice 
versa), and unlike the signal, the sensing vectors must have a 
dense representation in ϕ. 

 

3 SPARSE REPRESENTATION 

In the last decade, sparsity has emerged as one of the lead-
ing concepts in a wide range of signal-processing applications 
(restoration, feature extraction, source separation, and com-
pression, to name only a few applications). Sparsity has long 
been an attractive theoretical and practical signal property in 
many areas of applied mathematics. 
 

Recently, researchers spanning a wide range of viewpoints 
have advocated the use of overcomplete signal representa-
tions. Such representations differ from the more traditional 
representations because they offer a wider range of generating 
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elements (called atoms). Indeed, the attractiveness of redun-
dant signal representations relies on their ability to economi-
cally (or compactly) represent a large class of signals. Poten-
tially, this wider range allows more flexibility in signal repre-
sentation and adaptivity to its morphological content and en-
tails more effectiveness in many signal-processing tasks (resto-
ration, separation, compression, and estimation).  

4 SENSING MATRIX 

 
The sensing mechanisms collect information about a signal x(t) 
by linear functional recordings, 

yk = <x, ak>  k = 1, . . . , M.  (1) 
 
That is, we simply correlate the object we wish to acquire with 
the waveforms ak(t). This is a standard setup. If the sensing 
waveforms are Dirac delta functions (spikes), for example, 
then y is a vector of sampled values of x in the time or space   
domain. If the sensing waveforms are sinusoids, then y is a 
vector of Fourier coefficients; this is the sensing modality used 
in magnetic resonance imaging (MRI). 
 
We can represent this process mathematically as 

y = Ax;    (2) 
 
where A is an M x N matrix whose rows are the sensing wave-
forms ak; and y ϵ RM. The matrix A represents a dimensional-
ity reduction, i.e., it maps RN, where N is generally large, into 
RM, where M is typically much smaller than N. Note that in 
the standard CS framework we assume that the measurements 
are non-adaptive, meaning that the rows of A are fixed in ad-
vance and do not depend on the previously acquired meas-
urements. There are two main theoretical questions in CS. 
First, how should we design the sensing matrix A to ensure 
that it preserves the information in the signal x? Second, how 
can we recover the original signal x from measurements y? In 
the case where our data is sparse or compressible, we will see 
that we can design matrices A with M<< N that ensure that 
we will be able to recover the original signal accurately and 
efficiently using a variety of practical algorithms. To recover a 
unique k -sparse vector (a vector with atmost k < N nonzero 
entries) x; restrictions are imposed on A like satisfying the 
Null Space Property (NUS), the Restricted Isometry Property 
(RIP) and or some desired Coherence. 

 

5 RECENT ADVANCES 

Currently, researchers always use orthogonal wavelet to 
represent the images. But the wavelet only has single scaling 
function and cannot simultaneously satisfy the orthogonality, 
high vanishing moments, compact support, symmetry charac-
teristic and regularity. Developed from the theory of wavelet, 
multiwavelet transform, can simultaneously satisfy the five 
characteristics, and provides a great potential to obtain high 
performance coding. Paper [7], proposes a compressive sens-

ing image reconstruction based on sparse representation of the 
image in multi-wavelet transform domain while using Or-
thogonal Matching Pursuit iterative as the reconstruction algo-
rithm. To evaluate CS reconstruction, they deploy both the 
OMP and DMWT (discrete multi-wavelet transform) using 
random Gaussian and Bernoulli measurement and compare 
the results using 256 x 256 standard gray-scale image. Image 
reconstruction in compressive sensing using multiwavelet 
transform and wavelet transform are much better than using 
discrete cosine transform. Furthermore using multiwavelet 
domain is better than using wavelet domain. The result of CS 
reconstruction using Gaussian measurement from M=150, 170, 
190 are shown in Table I. According to the comparison in Ta-
ble I, it is confirmed that image reconstruction for compressive 
sensing using multi-wavelet and orthogonal matching pursuit 
is better. 
 

TABLE I: RESULTS USING GAUSSIAN MATRIX 

M DCT trans-
form 

Wavelet 
Transform 

Multi-wavelet 
transform 

150 25.3225 28.2376 28.9140 

170 26.4840 30.7201 31.1231 

190 28.0412 32.6347 32.9589 

 
Comparing PSNR for the image of reconstruction at several 
measurements M x N (N=256), it was noted that, the more 
measurements M are taken, the better the quality of image 
reconstruction it is. The result of CS reconstruction using Ber-
noulli measurement from M=150, 170, 190 are shown as fol-
lows: 

TABLE II: RESULTS USING BERNOULLI MATRIX 

M DCT 
transform 

Wavelet 
Transform 

Multi-Wavelet 
transform 

150 24.6866 28.3624 29.0561 

170 26.5264 30.4853 31.2575 

190 28.0339 32.5860 33.2606 

 
Most of existing methods for CS image reconstruction are 
suitable for piecewise smooth image, but do not behave well 
on texture-rich natural image. In paper [2], a new optimization 
problem for CS image reconstruction is proposed, in which 
different regularization terms are introduced for different 
morphological components of image. Experimental results 
show that the proposed method can be applied to reconstruct 
texture-rich images besides piecewise smooth ones, and out-
performs the existing methods on preserving detail features. 
For nonlinear reconstruction methods, besides the BP method 
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several fast greedy algorithms have been proposed, such as 
the orthogonal matching pursuit (OMP), the tree-based OMP 
and the stage-wise orthogonal matching pursuit (StOMP). 
Other algorithms include iterative soft-thresholding and pro-
jection onto convex sets, etc. When reconstructing 2D images, 
besides BP, another popular method is through the minimiza-
tion of total variation (min-TV). The min-TV method assumes 
that the image is gradient sparse and usually offers recon-
structed images with better visual quality. Unfortunately, 
these two methods and other relevant techniques are not ap-
propriate to reconstruct texture-rich natural images. The tex-
ture feature is often smoothed during the reconstruction 
process. Paper [2], proposes a new optimization problem for 
image reconstruction by taking advantages of morphological 
component analysis (MCA), which can preserve texture fea-
ture while not degrading the visual quality of whole image as 
shown in table III. 
 

In paper [8], CS reconstruction problem of images are dis-
cussed from a multivariate point of view. Most conventional 
wavelet-based CS reconstruction methods assume that the 
wavelet coefficients are mutually independent. However, sig-
nificant statistical dependency exists among the wavelet coef-
ficients of images. The statistical structures of the wavelet co-
efficients are considered for CS reconstruction of images that 
are sparse or compressive in wavelet domain. A multivariate 
pursuit algorithm (MPA) based on the multivariate models is 
developed. Several multivariate scale mixture models are used 
as the prior distributions of MPA. Their method reconstructs 
the images by means of modelling the statistical dependencies 
of the wavelet coefficients in a neighbourhood. Multivariate 
algorithms proposed here present superior performance com-
pared with some state-of-the-art CS algorithms. 

 
In CS applications, the acquisition of the linear projections 

Ax requires a physical implementation. In most cases, the use 
of an i.i.d. Gaussian random matrix A is either impossible or 
overly expensive. This motivates the study of easily imple-
mentable CS matrices. Two such matrices are the Toeplitz and 
circulant matrices [9], which have been shown to be almost as 
effective as the Gaussian random matrix for CS encod-
ing/decoding. In toeplitz matrix, every left-to-right descend-
ing diagonal is constant, i.e., T i,j = Ti+1,j+1. If T satisfies the addi-
tional property that ti = tn+i; for all i where n is the number of 

columns, it is also a circulant matrix C. An m x n general ma-
trix has mn degrees of freedom, but a partial circulant matrix 
of the same size has at most n degrees of freedom. Hence, a 
random circulant matrix is generated from much fewer inde-
pendent random numbers or is much less random than an 
i.i.d. random matrix of the same size. This fact seemingly sug-
gests that a random circulant matrix would yield less incoher-
ent projections, and consequently worse CS recovery. How-
ever, numerical results in [9] show that circulant matrices can 
be equally effective as i.i.d. random matrices. 

 
In paper [10], they investigate signal recovery procedure for 

the case where A is binary and very sparse. They show that, 
both in theory and in practice, sparse matrices are essentially 
as ―good‖ as the dense ones. At the same time, sparse binary 
matrices provide additional benefits, such as reduced encod-
ing and decoding time. They also report experimental results 
which indicate that, in practice, binary sparse matrices are as 
―good‖ as random Gaussian or Fourier matrices when used in 
Linear programming(LP) decoding (both in terms of the num-
ber of necessary measurements, and in terms of the recovery 
error). At the same time, the LP decoding is noticeably faster 
for sparse matrices. 

6 CONCLUSION 

Compressive sensing has changed the way the intellectual 
community deals with signals especially its acquisition and 
compression. It provides a necessary condition for sampling 
and faithful reconstruction of signal, whose bounds are much 
lower than the conventional Nyquist sampling theorem. The 
main challenges in compressive sensing are to select the best 
sparse representation for the signal, measurement matrix for 
acquisition and algorithm for reconstruction. Research is mov-
ing from the conventional DFT, DCT and wavelet sparse do-
mains to multi-wavelet, contourlet, curvelet, ridgelets and 
bandlets. Gaussian and Bernoulli matrices were the first few 
sensing matrices discovered. But they are inefficient for hard-
ware implementation. Therefore the intellectual community is 
looking for sparse matrices as potential candidates to replace 
the dense random matrices. Toeplitz and circulant matrices 
are also being used as measurement matrix. Basis pursuit and 
orthogonal matching pursuit (OMP) has proved efficient for 
reconstruction of sparse signals. Other algorithms which can  

 
TABLE III: COMPARISON OF THREE RECONSTRUCTION METHODS (PSNR IN DB) 

Image Boat Lena Barbara 

M 15000 25000 15000 25000 15000 25000 

BP 23.93 27.96 23.87 28.01 22.60 25.70 

Min-TV 29.67 33.41 29.69 33.18 25.67 28.50 
Method in [2] 30.96 35.39 30.84 35.29 26.86 29.75 
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be considered are the Tree-Based OMP, stage-wise OMP and 
compressive sampling matching pursuit (CoSAMP). 
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